Cheat sheet with formulae#
Here’s a link to responses to our example class survey that has formulae for doing all of these things in Sheets. You can simply copy/paste my formulae, making necessary changes as you go.
\[\begin{split}
\begin{array}{|c|c|c|}
\hline
\textbf{purpose} & \textbf{name of statistic} & \textbf{formula} \\
\hline
\text{estimate central tendency of quantitative variable} & \text{sample mean, } \bar{y} & \
\frac{1}{n}\sum_{i=1}^n y_i \\
\hline
\text{true central tendency of quantitative variable}, y & \text{population mean, } \mu_y & \
\mathbb{E}(Y) \hspace{0.1cm} \text{(don't sweat details)} \\
\hline
\text{estimate central tendency of binary variable} & \text{mean of binary variable, } \bar{b} \
& \frac{1}{n}\sum_{i=1}^n b_i \\
\hline
\text{estimate spread of quant. var.} & \text{sample variance and sample standard deviation: }
\ s^2; s \
& s^2 = \frac{\sum_{i=1}^n (y_i - \bar{y})^2}{n-1}; \
s = \sqrt{\frac{\sum_{i=1}^n (y_i - \bar{y})^2}{n-1}} \\
\hline
\text{true spread of quant. var.} & \text{variance and standard deviation: } \sigma^2; \sigma \
& \text{don't sweat details, but } \sigma_Y^2 = \mathbb{E}[(Y-\mu_Y)^2] \\
\hline
\text{estimate spread of sampling distribution for sample mean} & \text{standard error, SE} \
& \frac{s}{\sqrt{n}} \\
\hline
\text{calculate "how weird" our sample mean is given null, } H_0 & \
\text{step 1: test statistic, } t & t = \frac{\bar{y} - \mu_0}{\frac{s}{\sqrt{n}}} \\
\hline
\text{calculate "how weird" our sample mean is given null, } H_0 & \
\text{step 2: probability of a test statistic weirder than ours, } \mathbb{P}(|T| > |t|) \
& \text{software needed, any can do it} \\
\hline
\text{calculate plausible band of values for the true mean, } \mu_0 & \
\text{step 1: find number of SEs enclosing } C \text{ AUC} \
& \text{use software. often, } t_{95} \approx +/- 1.96 \\
\hline
\text{calculate plausible band of values for the true mean, } \mu_0 & \
\text{step 2: craft confidence interval} & \bar{y} +/- t_{C} {\frac{s}{\sqrt{n}}} \\
\hline
\end{array}
\end{split}\]